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Abstract

This paper will investigate diamond turning ogive error. The equations that describe surfaces with ogive error
will be derived from & simple Pythagorean model for tool offsets. The geometry of an ogive “sphere” will be reviewed
and ogive form errors on aspheric surfaces will also be investigated. By considering the wavefront errors created by
surfaces with ogive error the implications for optical tolerancing will be examined.

Introduction

Recent developments in diamond turning lathes have had a significant effect on the quality of machined opti-
cal surfaces.! With these developments in lathe accuracies other conditions, unrelated to machine tool geometry,
dominate the causes of snrface form errors. These conditions include improper component mounting, cutting tool
conditions and dynamic machining effects.? For further significant improvements to be made in the quality of directly
machined surfaces these conditions will need to be examined, understood, and corrected. This paper will examine
one aspect of these conditions and model its effect on the machined optical surface. This aspect is the problem of
diamond mechining with tool offsets and its effect on surface distortion known as ogive error.

Ogive Geometrical Model

The use of the term ogive error to describe the geometry created when diamond machining with tool offsets is
particularly descriptive. The term ogive is usually associated with a gothic architectural design form. In use since
the eleventh century, the pointed ogival style is prominent in most European “high” architecture. The constructional
aspects of an ogive form are shown in Figure 1. The basis of an ogive form is the generating curve, usually a circular
arc section. To create the ogive figure this generating curve is placed symmetrically about the figure’s axis. The ogive
figure’s degree. of “pointedness” depends on the amount of offset between the generating curve vertex and the axis of
symmetry. Note that the vertex can lie on either side of the axis creating both open and closed ogive figures. This
is analogous to what can occur in two axis diamond machining when the cutting tool is offset from the centerline of
the rotating workpiece.

In two axis orthogonal diamond machining the diamond tool is moved relative to a rotating workpiece in a coordi-
nated motion along two perpendicular axes to describe a generating curve in space. If at the vertex of the generating
curve the tool is not coincident with the rotational axis of the workpiece, then a tool offset is present. A machined
surface generated with a tool offset is described as an ogive surface of revolution. This description will serve as the
physical basis for this model of diamond turning ogive error. To simplify this model the following assumptions are
made: the coordinated motion of the tool in describing the generating curve is perfect, the rotating workpiece and
the centerline for the generating figure are parallel, tool radius effects are compensated, and no dyramic machining
effects exist.

Figure 2 shows this Pythagorean model for ogive geometry. The vertex of the generating curve is shown offset
from the centerline of a coordinate system that defines the rotating workpiece by the amounts §z and §y. The
distance from the rotating centerline to a cutting point on the curve and surface, p, is the Pythagorean sum of the
tool offsets and the radial distance, =, onr the generating curve. '




p=/(z+82) + 62 (1)

This equation can be inverted to yield the radial coordinate in the machining plane as a function of the rotational
coordinate.

2(p) = (o* - 84?)V/* - b2 (2)

If the generating curve is represented as a sagittal function of the radial coordinate, i.e, z = z(z), then the ogive
surface of revolution is deseribed by a direct substitution with Equation 2.

2= 2(z) = =([¢* — 671"/ - 6a) (3)
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An Example: The Ogive ;‘Sphere”

Before applying this Pythagorean representation for ogive error to general aspheric surfaces we will investigate '

the case of an ogive “sphere”. This case is particularly important because by evaluating a “sphere™ with ogive error
the amount of tool offset present can be calculated and corrected to a degree.® The generating curve for a sphere is
- a circular section. Using the common sagitta equation for the section of & circle with radius, r, a direct substitution
from Equation 3 can be made to yield the exact equation for an ogive “sphere”.

z=z(z)=r—Vr2—22=zlp) =1 — /72 — [(p® — Ey?)L/2 _ §2]? (4)

It should be noted that a tool offset &z enters into this equation in a very different fashion from a tool offset
§y. Assuming that the rotational coordinate is much greater than the tool offsets, i.e. p >3 8z, 6y, then a binomial
expansion of Equation 2 can be made,

z=e(p)=p--—"— == — - — oz {5)

This assumption will be true over the majority of the surface except at the center of rotation. At the center of
rotation the radius of the diamond tool will dominate the geometry in the presence of a §z offset and a cosmetic




defect will result from a 6y offset. Over the remainder of the surface, Equation 5 shows that the ogive figure is
-+ influenced less by Sy offsets than §z offsets because of the the relative strength of the terms. This is why it is possible
L - .).o set the height of diamond tools with the aid of a microscope and an interferometer is needed to reduce z offsets.
"It should also be noted that 8y is present in the equation only in an even power expansion unlike §z which is sign
dependent. Therefore, one can not distinguish from the macroscopic ogive surface if a tool offset in the y direction
places the tool above or below rotational centerline, while it is relatively easy to access which side of the rotationsl
axis the vertex of the generating curve lies. If we neglect terms with higher order offset dependencies, then Equation

5 reduces to an expression similar to & differential.

z=2z(p)~p-b=z (6)

Using this simplification, the equation for the sagittal difference between this ogive “sphere” and the same sphere
without an offset can be given.

6z =z(p, 62 =0) —z(p) = \/r? — (p— 62)  — /77 — p? (7)

If the following further assumption is made that the radius of the sphere is much larger than the surface aperture,
r > p, then these radicals can also be binomially expanded.

P (p—6=)? _ plz  §2?

6z = 2y 5 . - —2T (8)
Continuing to neglect terms with higher order offset dependences yields the following sagitta difference.
5z 05 252 (9)
- .

An ogive “sphere” therefore has a conical error profile in the rotational coordinate, p. In the interferometric
evaluation of such a surface, the center of the reference wavefront can be displaced so that the conical error appears
_ tilted. Proper selection of this displacement permits the optical path difference to be minimized between the center
.y~ of the figure and one edge and yielding twice the sagitta error between the center and the opposite edge. An inversion
i jof Equation 9 along with this factor of two from the tilted profile can be used to determine the bz offset from an

"= interferometric determination of the ogive “sphere”.

Figure 3 shows an example of this relationship. This figure represents a synthetic interferogram generated from
& ray-trace algorithm with rays traced off the following surface. The surface has a radius of curvature of 500mm (20
inches), an aperture of 50mm (2 inches), a §z offset of 12.5 gm (0.000,5 inches) and no 6y offset. Rays were traced off
this surface using the exact representation of the ogive surface as given in Equation 4. By the proper displacement
of the reference spherical wavefront center, to minimige the optical path difference between the center and left-hand
edge, the expected four fringes @ 632.8nm or 1.25um {0.000,05 inches) of 8z are observed,

radius of curvature » 500mm

aperture diameter 2  50mm

tool offset =z 12.5pm
tool offset §y 0.0pm
sagitta error §z 1.25pm

Figure 3 - Synthetic Interferogram for an Ogive “Sphere”




Ogive Form Errors On Aspheric Surfaces

The most common sagitta equation used for the representation of aspheric optical surfaces is the following,

cz?

1+ 4/1—{k+1)c?z?

This equation defines a conic surface of revolution modified by simple polynomial terms. With a direct substitu-
tion from Equation 2, the ogive form for the aspheric surface is given. By ray-tracing using this exact representation,
optical tolerancing for ogive errors can be obtained. A more insightful investigation of optical tolerancing can be
accomplished by using the approximations of Equation 6. Considering this expression to be an exact differential, a
simplified representation of the sagitta difference as a product of the derivative of the aspheric generating curve and
the 8= offset is possible.

z=2z(z) = + a2+ aaz® + azz® + a2t .- (11)

8z cz
bz v —f2 =
8= V91— (k+ 1)c?2?
Ogive form error is therefore sensitive to the slope of the generating equation and not to the total surface sagitta.
The slope can be the result of either the optical speed of the surface or higher order polynomial terms. Certain
observations can be made based on this simplification. A linear axicon, i.e. a cone shaped surface, will not suffer

from ogive error but only an axial displacement of the surface. The ogive error for a parabolic surface will have a
linear radial dependence. This is consistent with the approximations made for the case of an ogive “sphere”.

+ a1 + 2azz + 3ag2® + daq2® + .- .| 62 (12)

Equation 12 has other interesting implications. This equation has the exact form as the radial shearing interfer-
ometer equation where the differential, §z, is the displacement between the radially sheared wavefronts. * Although
radial shearing interferometers are often used to evaluate aspheric surfaces, the similarity between the ogive surface
and the testing technique can make the proper interpretation of the interference pattern difficult. It is very important
when evaluating diamond turned surfaces by radial shearing interferometry to consider this effect.

Tolerancing Considerations and Ogive Error

The relationship between surface distortions in an optical system and image quality is complex. Facfors such
as surrounding media, surface proximity to stops and pupils, field angle considerations, and wavefront obliquity all
eflect how surface distortions influences image quality. In a rigorous sense the tolerancing of optical surfaces to satisfy
a system’s imaging requirement must take into account these factors and more. To tolerance surfaces with ogive
error, ray-tracing can be used in conjunction with this Pythagorean model to provide exact simulations. Tolerancing
considerations of ogive error can be investigated by examining the influence on image quality of wavefronts aberrated
by by ogive surfaces.

Ogive aberrated wavefronts would be radially symmetric and related to the derivative of the defining aspheric
generating curve. Wavefronts composed of simple radial dependent terms can be used to compare the effects of
different order aspheric terms on image quality. The wavefront error, dw, in the exit pupil can be defined as a
coeflicient related to the severity of the ogive error, «,, times the radial position raised to an appropriate power.

fw = a,p” ‘ (13)

~ When these wavefront errors are small the Strekl intensity for such a system will be degraded by the square of
the root-mean-square departure from a reference spherical wavefront. A measure of the sensitivity of these wavefront
errors can be obtained by comparing rms values for wavefronts with different radial dependencies but with the same

- peak-to-valley error. The rms values for these wavefronts can be calculated from the following definition.

27 pp' 272 q /2
& 8pdd
rTMS = fo ";" [ wip) + a0 + azp ] pae {14)
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In Equation 14 the rms value is calculated based on the wavefront error, dw, a best fit piston term, ay, and a
-.,_\best fit defocus term, 3. In the interest of comparison, the analysis can be simplified by considering the integration
.+ pvera unit circle exit pupil (i.e. p' =1 ) and with an unfocused peak-to-valley wavefront error of unity (i.e. e, = 1).

1/2
ms = [ o Jo (" + o +Q=P’):Paﬂa'9]

16
ozt fol pBp8Y (49)
After integration the rms can be explicitly expressed.
1/3 :
|1 . a3  dag 4o
1'm_[u+1"":""JFTJWHZ+n+4+a°arz (16)

Partial derivatives of equation 16 can be taken and optimired values for piston, ay, and defocus, a3, determined
algebraically from a least squares reduction.

3 2
a°—4[n+4_n+2] _ (1"
1 2
=12 —
@2 =1 [n+2 n+4] (18)

By substituting these optimized values for piston and defocus into Equation 16, values the peak-to-valley and
., ms wavefront distortions can be calculated. These results are summarized in the table below.

O Wavefrenl Data for Different Polynomial Terms

---- - il exponent ag a; P-V RMS 1l
1 ~0.266667 ~0.800000 0.312500 0.047140 ||
2 0.000000 -1.600000 0.000000 0.000000 ||
3 0.114286 _1.028571 0.161213 0.042857 ||
u 4 (.166667 -1.000000 0.250000 0.074536 |

5 0.190476 -0.952381 0.347910 0.097202

6 0.200000 -0.900000 0.428634 0.113389

7 0.202020 -0.848485 0.495347 0.124894

8 0.200000 -0.800000 0.550882 0.133333

9 0.195804 -0.755245 0.597515 0.139317

190 0.190476 -0.714286 0.637022 0.143577

Here is an example of how the data in this table can be used to assist in optical tolerancing ogive error. Consider
the variations in wavefront rms values for aberrated wavefront caused by a parabolic reflector. If the wavefront error
is aberrated due to ogive error the power dependence will be first-order. If the wavefront error is similar to third-
order spherical aberration the power dependence will be fourth-order. From the table above it can be seen that the
ogive error effect on rms will be almost half the effect of third-order spherical aberration (i.e. 0.047140 to 0.074536).
The Strehl ratio, and hence image quality, of a system will be substantially better for the ogive paraboloid then
the spherically aberrated paraboloid. Optical tolerancing of the ogive surface in this instance can be considerably
loosened when compared with a model for surface distortion that is spherically aberrated. Figure 4 shows synthetic
interferograms for these waveftonts.




Ogive Wavefront 3rd Order Spherically Aberrated Wavefront

Figure 4 - Synthetic Interferogram for Aberrated Wavefronts

Conclusion

This paper has shown how diamond machining ogive error can be based on a Pythagorean model for tool offset.
Using this model the form error of an ogive “sphere” and asphere have been examined. It has been shown that optical
tolerancing for ogive error will be dependent on the derivative of the aspheric surface form and has a significant effect
on optical tolerancing,
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